

New Product

SiE800DF

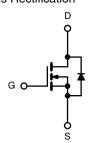
Vishay Siliconix

N-Channel 30-V (D-S) MOSFET

PRODUCT SUMMARY								
		I _D (A) ^a						
V _{DS} (V)	r _{DS(on)} (Ω)	Silicon Limit	Package Limit	Q _g (Typ)				
30	0.0072 at V_{GS} = 10 V	90	50	12 nC				
	0.0115 at V_{GS} = 4.5 V	73	50	12110				

Package Drawing

Fop surface is connected to pins 1, 5, 6, and 10


Ordering Information: SiE800DF-T1-E3 (Lead (Pb)-free)

FEATURES

- Extremely Low $\, {\rm Q}_{\rm gd} \, {\rm WFET}$ Technology for Low Switching Losses
- TrenchFET[®] Power MOSFET
- Ultra Low Thermal Resistance Using Top-Exposed PolarPAK[®] Package for **Double-Sided Cooling**
- Leadframe-Based New Encapsulated Package - Die Not Exposed
- Same Layout Regardless of Die Size
- Low Qgd/Qgs Ratio Helps Prevent Shoot-Through
- 100 % R_g and UIS Tested

APPLICATIONS

- VRM
- DC/DC Conversion: High-Side
 - Synchronous Rectification

N-Channel MOSFET For Related Documents

ABSOLUTE MAXIMUM RATINGS $T_A = 25 \degree C$, unless otherwise noted								
Parameter		Symbol	Limit	Unit				
Drain-Source Voltage		V _{DS}	30	V				
Gate-Source Voltage		V _{GS}	± 20	- ·				
	T _C = 25 °C	Ι _D	90 (Silicon Limit)					
			50 ^a (Package Limit)					
Continuous Drain Current (T _J = 150 °C)	T _C = 70 °C		50 ^a					
	T _A = 25 °C		20.6 ^{b, c}	1				
	T _A = 70 °C		16.5 ^{b, c}	A				
Pulsed Drain Current		I _{DM}	60	1				
Continuous Source-Drain Diode Current	T _C = 25 °C		50 ^a					
	T _A = 25 °C	I _S	4.3 ^{b, c}					
Single Pulse Avalanche Current	L = 0.1 mH	I _{AS}	40					
Avalanche Energy		E _{AS}	80	mJ				
	T _C = 25 °C		104	w				
Maximum Power Dissipation	T _C = 70 °C	P _D	66					
Maximum Power Dissipation	T _A = 25 °C		5.2 ^{b, c}					
	T _A = 70 °C		3.3 ^{b, c}	1				
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 50 to 150	°C				
Soldering Recommendations (Peak Tempera	ature) ^{d, e}	J	260					

Notes:

Notes:
a. Package limited is 50 A.
b. Surface Mounted on 1" x 1" FR4 board.
c. t = 10 sec.
d. See Solder Profile (http://www.vishay.com/doc?73257). The PolarPAK is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.
e. Rework Conditions: manual soldering with a soldering iron is not recommended for leadless components.

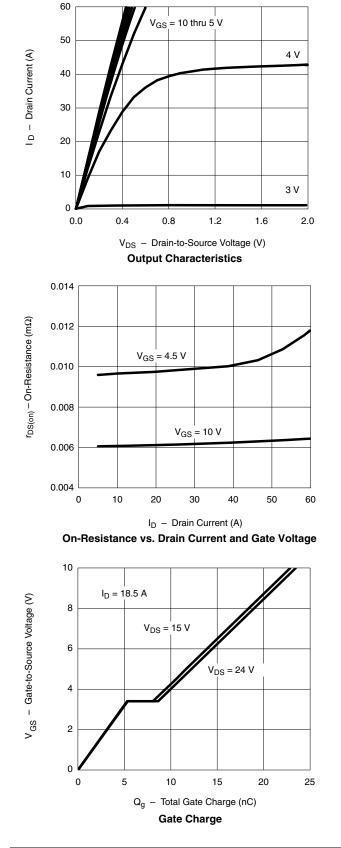
Vishay Siliconix

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Typical	Maximum	Unit	
Maximum Junction-to-Ambient ^{a, b}	$t \le 10$ sec	R _{thJA}	20	24	
Maximum Junction-to-Case (Drain Top) ^a	Steady State	R _{thJC} (Drain)	1	1.2	°C/W
Maximum Junction-to-Case (Source) ^{a, c}	Sleady Slale	R _{thJC} (Source)	2.8	3.4	l

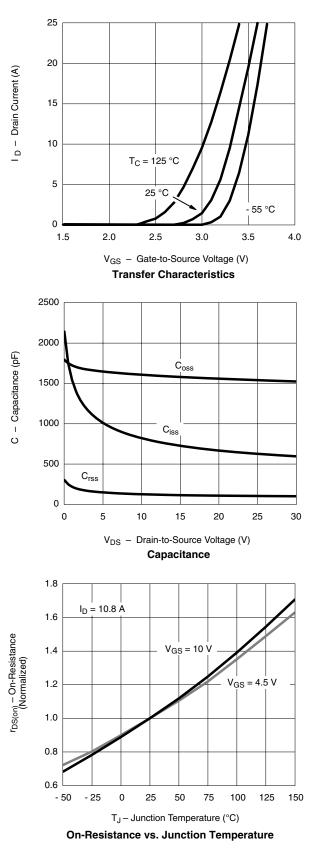
Notes:

a. Surface Mounted on 1" x 1" FR4 board.
b. Maximum under Steady State conditions is 68 °C/W.
c. Measured at source pin (on the side of the package).


SPECIFICATIONS T_J = 25 °C, unless otherwise noted Unit Symbol **Test Conditions** Parameter Min Тур Max Static $V_{GS} = 0 V, I_D = 250 \mu A$ Drain-Source Breakdown Voltage 30 V V_{DS} V_{DS} Temperature Coefficient $\Delta V_{DS}/T_{J}$ 34.5 $I_{D} = 250 \ \mu A$ mV/°C V_{GS(th)} Temperature Coefficient $\Delta V_{GS(th)}/T_J$ - 6.7 $V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$ Gate-Source Threshold Voltage V_{GS(th)} 1.5 2.2 3.0 V $V_{DS} = 0 V, V_{GS} = \pm 20 V$ Gate-Source Leakage I_{GSS} ± 100 nA $\frac{V_{DS} = 30 \text{ V, } V_{GS} = 0 \text{ V}}{V_{DS} = 30 \text{ V, } V_{GS} = 0 \text{ V, } T_{J} = 55 \text{ °C}}$ 1 Zero Gate Voltage Drain Current μA IDSS 10 $V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$ On-State Drain Current^a I_{D(on)} 25 А V_{GS} = 10 V, I_D = 11 A 0.006 0.0072 Ω Drain-Source On-State Resistance^a r_{DS(on)} V_{GS} = 4.5 V, I_D = 9 A 0.0115 0.0095 V_{DS} = 15 V, I_D = 11 A g_{fs} 50 S Forward Transconductance^a Dynamic^b C_{iss} Input Capacitance 1600 Coss $V_{DS} = 15 V$, $V_{GS} = 0 V$, f = 1 MHzpF **Output Capacitance** 750 C_{rss} **Reverse Transfer Capacitance** 120 $V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 18.5 \text{ A}$ 35 23 **Total Gate Charge** Qg 12 18 nC Q_{as} $V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 18.5 \text{ A}$ Gate-Source Charge 5.6 Gate-Drain Charge Q_{gd} 3 f = 1 MHzGate Resistance Rg 1.3 1.95 Ω Turn-on Delay Time t_{d(on)} 20 30 V_{DD} = 15 V, R_L = 1.5 Ω **Rise Time** 15 25 tr Turn-Off Delay Time $I_D \cong$ 10 A, V_{GEN} = 4.5 V, R_q = 1 Ω 15 25 t_{d(off)} Fall Time 8 15 t_f Turn-on Delay Time 15 25 t_{d(on)} ns $V_{DD} = 15 \text{ V}, \text{ R}_{L} = 1.5 \Omega$ **Rise Time** t_r 15 25 Turn-Off Delay Time $I_D \cong$ 10 A, V_{GEN} = 10 V, R_g = 1 Ω 40 25 t_{d(off)} 15 Fall Time t_f 10 **Drain-Source Body Diode Characteristics** T_C = 25 °C Continuous Source-Drain Diode Current I_S 50 Α I_{SM} 60 Pulse Diode Forward Current^a V_{SD} $I_{S} = 10 \text{ A}$ ٧ Body Diode Voltage 0.8 1.2 Body Diode Reverse Recovery Time t_{rr} 45 70 ns Q_{rr} Body Diode Reverse Recovery Charge 41 65 nC $I_F = 10 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}, T_{.1} = 25 \text{ }^{\circ}\text{C}$ **Reverse Recovery Fall Time** ta 21 ns **Reverse Recovery Rise Time** tb 24

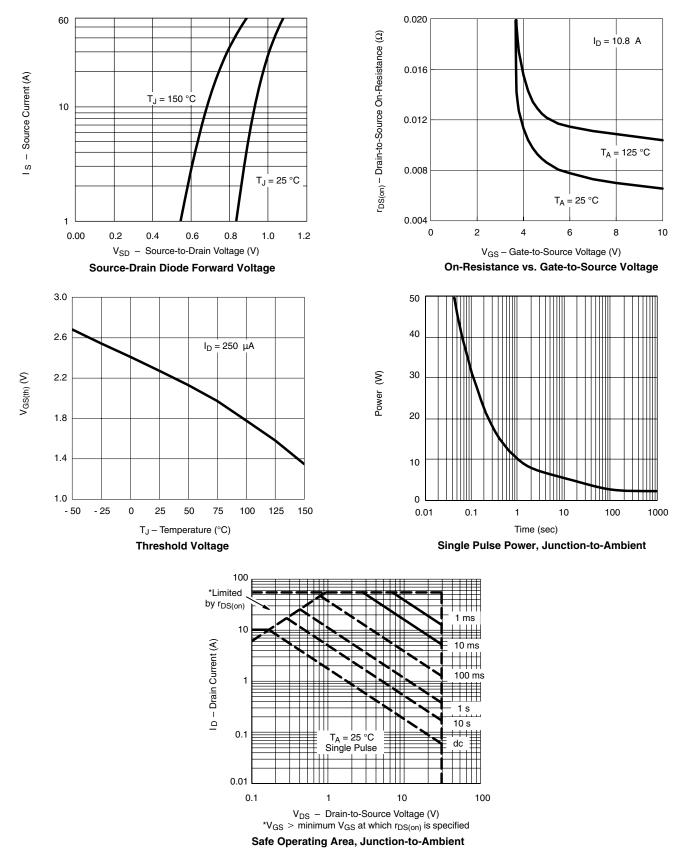
Notes

a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %

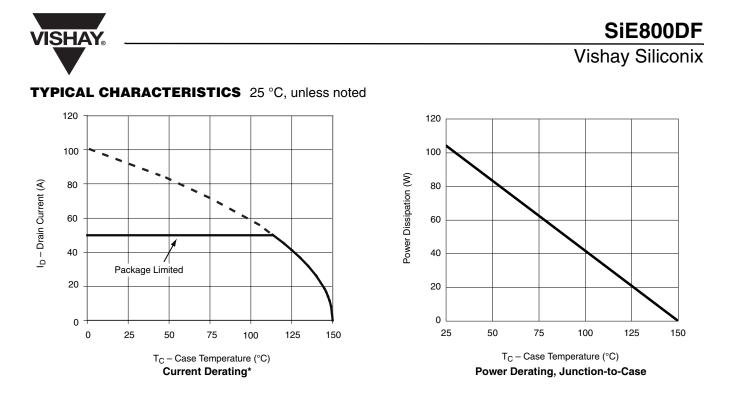

b. Guaranteed by design, not subject to production testing.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

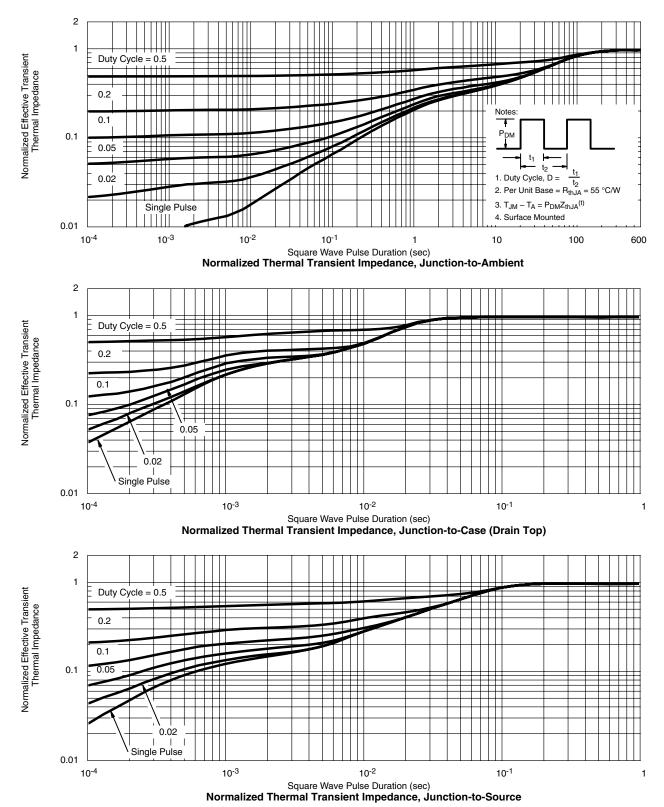
VISHAY


Document Number: 73199 S-60784-Rev. D, 08-May-06 www.vishay.com

Vishay Siliconix


SiE800DF

Vishay Siliconix



* The power dissipation P_D is based on $T_{J(max)}$ = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

VISHAY.

Vishay Siliconix

TYPICAL CHARACTERISTICS 25 °C, unless noted

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?73199.

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.